SOLUTIONS TO EXERCISES

[Last updated 7/7/2015]

[Problems 7 and 8 do not have solutions written up]

Chapter 1.

- 1. Draw the solution space graphically for the following problems. Then, determine the optimum fractional solutions using your graph.
 - a. The feasible solution space is denoted by *JKLM*. The optimum fractional solution is 13.2.

b. The feasible solution space is the region above *KLM*. The optimum fractional solution is **8**.**5**.

- 2. We use this notation so that when the relative cost coefficients $\overline{c_j}$ all become nonnegative, it indicates that the maximum value of x_0 , or the minimum value z is achieved.
- 3. Use the ratio method to solve the following.
 - a. The minimum ratio is $\frac{1}{4}$ when j = 1. So, we let $x_1 = \frac{120}{4} = 30$, and the optimum value is therefore **30**.
 - b. The minimum ratio is $\frac{8}{15}$ when j = 2. So, we let $x_2 = \frac{90}{15} = 6$, and the optimum value is therefore **48**.
- 4. Write linear programs for the following two problems.

a.
$$\min \quad z = 90x_1 + 80x_2$$

subject to $6x_1 + 6x_2 \ge 25$,
 $6x_1 + 4x_2 \ge 18$,
 $x_j \ge 0$.
b. $\min \quad z = 2x_1 + 4x_2$
subject to $2x_1 + 3x_2 \ge 10$,
 $4x_1 + x_2 \le 8$,
 $x_j \ge 0$.

- 5. The minimum ratio is 2 when j = 1. So, we let $x_1 = \frac{120}{8} = 15$, and the optimum value is therefore 240.
- 6. The minimum ratio is $\frac{7}{4}$ when j = 2. So, we let $x_2 = \frac{120}{4} = 30$, and the optimum value is therefore 210.

- 7. In Exercises 5 and 6, both constraints are equations. Will the solutions change if the constraints are inequalities? [insert answer here]
- 8. Prove that the ratio method works correctly for both maximizing and minimizing the objective function. [insert proof here]