SOLUTIONS TO EXERCISES

[Last updated 7/7/2015]
[Problems 7 and 8 do not have solutions written up]

Chapter 1.

1. Draw the solution space graphically for the following problems. Then, determine the optimum fractional solutions using your graph.
a. The feasible solution space is denoted by $J K L M$. The optimum fractional solution is $\mathbf{1 3 . 2}$.

b. The feasible solution space is the region above $K L M$. The optimum fractional solution is 8.5.

2. We use this notation so that when the relative cost coefficients \bar{c}_{j} all become nonnegative, it indicates that the maximum value of x_{0}, or the minimum value z is achieved.
3. Use the ratio method to solve the following.
a. The minimum ratio is $\frac{1}{4}$ when $j=1$. So, we let $x_{1}=\frac{120}{4}=30$, and the optimum value is therefore $\mathbf{3 0}$.
b. The minimum ratio is $\frac{8}{15}$ when $j=2$. So, we let $x_{2}=\frac{90}{15}=6$, and the optimum value is therefore 48.
4. Write linear programs for the following two problems.
a. $\quad \min \quad z=90 x_{1}+80 x_{2}$

$$
\begin{array}{ll}
\text { subject to } & 6 x_{1}+6 x_{2} \geq 25, \\
& 6 x_{1}+4 x_{2} \geq 18 \\
& x_{j} \geq 0
\end{array}
$$

b. $\quad \min \quad z=2 x_{1}+4 x_{2}$
subject to $\quad 2 x_{1}+3 x_{2} \geq 10$,
$4 x_{1}+x_{2} \leq 8$,
$x_{j} \geq 0$.
5. The minimum ratio is 2 when $j=1$. So, we let $x_{1}=\frac{120}{8}=15$, and the optimum value is therefore 240 .
6. The minimum ratio is $\frac{7}{4}$ when $j=2$. So, we let $x_{2}=\frac{120}{4}=30$, and the optimum value is therefore 210.
7. In Exercises 5 and 6, both constraints are equations. Will the solutions change if the constraints are inequalities? [insert answer here]
8. Prove that the ratio method works correctly for both maximizing and minimizing the objective function. [insert proof here]

